SPIRAL MOTION OF A CYLINDER IN A POWER-LAW
NON-NEWTONIAN FLUID

I. P. Grinchik and A, Kh. Kim UDC 532,135

A study is made of steady-state flow in a power-law system in the presence of double shear
caused by spiral motion of a circular cylinder,

The flow of non-Newtonian systems under pure shear has been studied comparatively well, A num-
ber ofpapersaredevotedto an experimental [1] and theoretical [2, 3] investigation of the flow of anomalously
viscous systems subject to the Schwedow —Bingham equation for the effect of two pure shears.

Let us examine a flow with double shear of non-Newtonian systems described by the Ostwald de Vallee
[4] equation. Gutkin [2] solved the problem for a viscoplastic system in such a formulation.

Let the fluid flow in the gap between coaxial cylinders be caused by the uniform spiral motion of the
inner circular cylinder, We consider the cylinder to be sufficiently long, and the medium along the cylinder
axis to be infinite, Let v, denote the translational velocity of the cylinder, and wy the angular velocity, As-
signing w, and v; is equivalent to assigning the rotational moment M and the axial force F, The flow of the
medium is caused by the cylinder motion, hence, there is no pressure gradient along the cylinder axis.

The rheological equation of state of the system in tensor form is
1, = 2kh*10,,. @)

Let us solve the problem in a cylindrical r; z; ¢ coordinate system. The velocity components Vo and
vz depend only on r, and there is no vy. The z axis is directed along the cylinder axis.

Neglecting inertial and mass forces, the Cauchy equilibrium equations can be written as

1 d

T ar (r*prg) = 0, 2)
1

L py =0, ®

The continuity equation is satisfied identically, In conformity with (1), the stress-tensor components
different from zero are:

. dw

Pro = kh™ Y *d—r‘ » (4)
dv

= kh"71 —%, (5)
Dy dr

where

\ 2 / 1
do dv, ) . (6)

/
h = .
l/ (r dr ) N ( dr
It must be kept in mind that
dm dov

— << 0; 2<20; h .
o o < >0

In the absence of slip on the boundary with the solid wall the boundary conditions are
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for =71 Up=ruw, uv,= Vs
for r=r, v,=0, v,=0,
Integrating (2) and (3) we obtain

) (7)

' ®)

+ j,p *gﬁl_ﬁ

where Cy and C, are constants of integration. We obtain from (7), (8) and (4), (5) by the Gutkin method [2]

-y, dw C
khn 1r e L
dr e’ ©)
do, , dw
e ar 0 (10)
where
G,
o = —
o
Formula (6) can be written as
d B
h=r E‘;l‘lfl + ot . (11)
Substituting (11) into (9) we obtain
) =l _nte {—n
%‘} - (%) L e (12)
Substituting (12) into (10) results in the equation
1
do, C, \w =2 l=n

The right sides of (12), (13) are binomial differentials. Both equations are integrated in finite form for
the values

n=%, where [ =1, 2, 3, ... .

After separation of variables by the substitution x = v 1 + ¢?r?, equations (12) and (13) are reduced, respec-
tively, to
1

n !
0=— (%1_) o ’(Tzi—%:f tc, (14).
L
v, = (_%_) n q2l“1‘j‘ _#(xf‘d—xl)’ +C, (15)
where
oo _ F
.Cl M .

The integration constants C; and C4 are determined from the condition thatw = 0 and v = 0 for r = r,, For
the case of cylinder motion in an infinite fluid, the flow zone is theoretically extended an infinite distance

from the cylinder axis, hence, C; and C4 are determined from the condition that w = 0and vy, = 0 for r = «.
Recursion formulas can be obtained to evaluate the integrals in (14) and (15). Let us introduce the notation:

1 I
L= | — ddx J, = _xdx
(*—1) (¢ — 1
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Integrating I; and J; by parts, we obtain

J il of 16
(e — i e o
¥ 21 2
Iy = I Ji. 1
T e —1y +1+1”L 1+t an
From (16) we obtain
— xi*1 1
Ds = =, (18
M a1 g )
Analogously from (17) we have
P _ 1—1
1T Ty (2 — 1)t g v (19)
The integrals can be evaluated directly for I =1, 2,
Finally, we have for 1 =1,2,3,...
i
o) =— () @+ 20)
14
o (1) = (fk—) o, 4 G, (21)

For other values of n # 1/1, we evaluate the integrals in (12), (13) approximately. Let us represent the
integrands as power series which converge for |ar| < 1
_r_1—|—2 1—n n--2 n—2

’ 'n—(l+a2r2)—2p;—': f—— n + l—n aer
3n—2 2" 5 2
A—m(—3n) ,5 (I—n1—38m)—5m) , "
e T Eer T

An analogous series is obtained for the integrand of (13), only the exponents of the variable will be two units
greater.

The series obtained can be integrated term by term for values r < M/F, i.e., when the gap between
the coaxial cylinders isnot very great and the radius of the inner cylinder is small. After substituting the
series obtained into (12), (13) and integrating, we obtain formulas for the angular and translational veloc-
ities of the fluid

1

M )'rf .
= — r, n, L (g,
o <2nk. fa( a) + Cs

i

M\ )
vz:(?:l‘tl;) f2(rr n, OL)+C4

The integration constants Cj and C; are determined from the boundary conditions.
Let us examine particular cases.

1, If we set o = 0in (12), (13), which corresponds to no axial force F, we then obtain from (12)

1
n n-42
(o)
r
It follows from (13) that v, = 0. Since the shear gradient is

. de . M\
=r— <0 dy={——1 .,
v dr <V andy (2nkr2 )

then we obtain C; = M/ 27 from (22), where M is a given torque.
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Integrating (22) and determining the integration constant from the boundary conditions, we obtain the
fundamental equation (11.2.12) [5] for a coaxially cylindrical viscosimeter
1 2 2

s T -(20)

2, For ry, = = we obfain the forque from (23) which must be applied to a cylinder so that it would
rotate uniformly in an infinite fluid

M = 2ukr? ( 26 )
'\ n

If we put n=1;k = pu, then we obtain the known relations for a Newtonian fluid,

NOTATION
I, is the stress tensor deviator;
&, is the strain rate tensor deviator;
M is the torque;
F is the axial force;
w is the angular velocity;
v, is the translational velocity;
n is the index of non-Newtonian fluid behavior;
k is the measure of system consistency;
¥ is the shear velocity;
vy  is the rotational velocity;

wy  is the angular velocity of cylinder;

ry  is the radius of inner cylinder;

r,  is the radius of outer cylinder;

3 is the translational velocity of cylinder;
h is the strain rate intensity.
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